All functions

SDAM()

Spectrally Deconfounded Additive Models

SDForest()

Spectrally Deconfounded Random Forests

SDTree()

Spectrally Deconfounded Tree

copy(<SDForest>)

Copy a forest

copy(<SDTree>)

Copy a tree

cvSDTree()

Cross-validation for the SDTree

f_four()

Function of x on a fourier basis

fromList(<SDForest>)

SDForest fromList method

fromList(<SDTree>)

SDTree fromList method

get_Q()

Estimation of spectral transformation

get_W()

Estimation of anchor transformation

get_cp_seq(<SDForest>)

Get the sequence of complexity parameters of an SDForest

get_cp_seq(<SDTree>)

Get the sequence of complexity parameters of an SDTree

mergeForest()

Merge two forests

partDependence()

Partial dependence

plot(<SDTree>)

Plot SDTree

plot(<partDependence>)

Plot partial dependence

plot(<paths>)

Visualize the paths of an SDTree or SDForest

plotOOB()

Visualize the out-of-bag performance of an SDForest

predict(<SDAM>)

Predictions for SDAM

predict(<SDForest>)

Predictions for the SDForest

predict(<SDTree>)

Predictions for the SDTree

predictOOB()

Out-of-bag predictions for the SDForest

predict_individual_fj()

Predictions of individual component functions for SDAM

print(<SDAM>)

Print SDAM

print(<SDForest>)

Print SDForest

print(<SDTree>)

Print a SDTree

print(<partDependence>)

Print partDependence

prune(<SDForest>)

Prune an SDForest

prune(<SDTree>)

Prune an SDTree

regPath(<SDForest>)

Calculate the regularization path of an SDForest

regPath(<SDTree>)

Calculate the regularization path of an SDTree

simulate_data_nonlinear()

Simulate data with linear confounding and non-linear causal effect

simulate_data_step()

Simulate data with linear confounding and causal effect following a step-function

stabilitySelection(<SDForest>)

Calculate the stability selection of an SDForest

toList(<SDForest>)

SDForest toList method

toList(<SDTree>)

SDTree toList method

varImp(<SDAM>)

Extract Variable importance for SDAM

varImp(<SDForest>)

Extract variable importance of an SDForest

varImp(<SDTree>)

Extract variable importance of an SDTree