Predicts the response for new data using a fitted SDAM.
# S3 method for class 'SDAM'
predict(object, newdata, ...)
A vector of predictions for the new data.
set.seed(1)
X <- matrix(rnorm(10 * 5), ncol = 5)
Y <- sin(X[, 1]) - X[, 2] + rnorm(10)
model <- SDAM(x = X, y = Y, Q_type = "trim", trim_quantile = 0.5, nfold = 2, n_K = 1)
#> [1] "Initial cross-validation"
#> [1] "Second stage cross-validation"
predict(model, newdata = data.frame(X))
#> [1] -0.02222175 -0.02222175 -0.02222175 -0.02222175 -0.02222175 -0.02222175
#> [7] -0.02222175 -0.02222175 -0.02222175 -0.02222175