Predicts the response for new data using a fitted SDTree.
# S3 method for class 'SDTree'
predict(object, newdata, ...)
A vector of predictions for the new data.
set.seed(1)
n <- 10
X <- matrix(rnorm(n * 5), nrow = n)
y <- sign(X[, 1]) * 3 + rnorm(n)
model <- SDTree(x = X, y = y, Q_type = 'no_deconfounding', cp = 0.5)
predict(model, newdata = data.frame(X))
#> 1 2 3 4 5 6 7 8
#> -1.405491 -1.405491 -1.405491 2.892405 2.892405 -1.405491 2.892405 2.892405
#> 9 10
#> 2.892405 -1.405491